NAME

ROLL NO

	INDIAN SCHOOL MUSCAT MIDDLE SECTION FIRST PERIODIC TEST 2022 – 23	NABET
	MATHEMATICS (SET-A)	Code: MZM01
CLASS-VIII		Time Allotted: 40 Minutes
22.05.2022		Max. Marks: 20

General Instructions.

1. The question paper comprises of three sections A, B, and C. You have to attempt all the sections.

2.All the questions are **compulsory**.

3.All the answers should be written in the answer sheet provided.

Q.NO1	<u>SECTION A - FILL IN THE BLANKS ('1' MARK EACH) – TOTAL – 04 MARKS</u>	Marks
(a)	There are <u>UNCOUNTABLE</u> rational numbers between $\frac{-2}{7}$ and $\frac{6}{7}$.	1
(b)	$\frac{5}{8}$ The sum of 8 and its additive inverse is 0	1⁄2 + 1⁄2
(c)	Measure of each exterior angle of 12-sided regular polygon = 360^o ÷ 12 = 30^o	1⁄2 + 1⁄2
(d)	The sum of the interior angles of a nonagon = $(9 - 2) \times 180^{\circ} = 1260^{\circ}$	1/2 + 1/2

Q.NO2	<u>SECTION B – ('2' MARKS EACH) – TOTAL – 10 MARKS</u>	Marks
(a)	How many diagonals are there for a polygon with 13 sides?	$\frac{1}{2} + \frac{1}{2} + \frac{1}$
	Number of diagonals = 13(13 – 3) / 2 = (13 × 10) /2 =13×5 = 65	1/2
	Find the number of sides for a regular polygon with each interior angle 160°.	
(b)	Measure of each exterior angle = $180^{\circ} - 160^{\circ} = 20^{\circ}$ Number of sides = $360^{\circ} \div 20^{\circ} = 18$	1 +1
(c)	Find the multiplicative inverse of $\left(\frac{-7}{8} + \frac{5}{6}\right)$. $\left(\frac{-7}{8} + \frac{5}{6}\right)$. LCM= 24 $= \left(\frac{-21}{24} + \frac{20}{24}\right) = \frac{-1}{24}$. MULTIPLICATIVE INVERSE = -24	1 +1
(d)	The product of two rational numbers is $\frac{-9}{10}$. If one of the rational numbers is $\left(\frac{2}{5} \times \frac{3}{4}\right)$ then find the other rational number.	1 + ½ + ½

	Ans: $\frac{-9}{10} \div \left(\frac{2}{5} \times \frac{3}{4}\right) = \frac{-9}{10} \div \frac{3}{10} = -3$	
(e)	Find the value of 'x'.	$\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$
	Ans: $/1 = 180^{\circ} - 90^{\circ} = 90^{\circ}$ (linear pair)	
	90 ⁰ + 90 ⁰ + 40 ⁰ + 60 ⁰ + x = 360 ⁰ (Sum of the exterior angles of a polygon is 360 ⁰) 280 ⁰ + x = 360 ⁰ X = 360 ⁰ - 280 ⁰ = 80 ⁰	

Q.NO	<u>SECTION – C ('3' MARKS EACH) – TOTAL – 06 MARKS</u>	Marks
3.	Simplify $\frac{-3}{7} \times \frac{5}{12} + \frac{11}{12} \times \frac{-3}{7} - \frac{-3}{7}$ using suitable properties. $\frac{-3}{7} \times (\frac{5}{12} + \frac{11}{12} - 1)$ $= \frac{-3}{7} \times (\frac{5}{12} + \frac{11}{12} - \frac{12}{12})$ $= \frac{-3}{7} \times (\frac{5}{12} + \frac{11}{12} - \frac{12}{12})$	1 + 1+1
4.	$= \frac{-7}{7}$ The angles of a pentagon are in the ratio 3 : 4 : 5 : 5 : 10. Find the largest and the smallest angles of the pentagon. Sum of the interior angles of a pentagon = (5 - 2) × 180° = 540° 3x + 4x + 5x + 5x + 10x = 540° 27x = 540° X = 540° ÷ 27 = 20° Largest angle = 10x = 10 × 20° = 200° The smallest angle = 3x = 3 × 20° = 60°	1 + 1 + ½ + ½

End of Answer Key.