	INDIAN SCHOOL MUSCAT MIDDLE SECTION	
FIRST PERIODIC TEST 2022 - 23		

General Instructions.

1. The question paper comprises of three sections A, B, and C. You have to attempt all the sections. 2. All the questions are compulsory.
3.All the answers should be written in the answer sheet provided.

Q.NO1	SECTION A - FILL IN THE BLANKS ('1' MARK EACH) - TOTAL - 04 MARKS	Marks
(a)	There are UNCOUNTABLE rational numbers between $\frac{-2}{7}$ and $\frac{6}{7}$.	1
(b)	The sum of $\frac{\mathbf{5}}{\mathbf{8}}$ and its additive inverse is $\underline{\mathbf{0}}$	$1 / 2+1 / 2$
(c)	Measure of each exterior angle of 12-sided regular polygon $=\mathbf{3 6 0} \mathbf{~ + ~} \mathbf{1 2}=\mathbf{3 0}{ }^{\circ}$	$1 / 2+1 / 2$
(d)	The sum of the interior angles of a nonagon $=(9-2) \times 180^{\circ}=\underline{1260^{\circ}}$	$1 / 2+1 / 2$

Q.NO2	SECTION B - ('2' MARKS EACH) - TOTAL - 10 MARKS	Marks
(a)	How many diagonals are there for a polygon with 13 sides? Number of diagonals $=13(13-3) / 2=(13 \times 10) / 2=13 \times 5=65$	$\begin{gathered} 1 / 2+1 / 2 \\ +1 / 2 \\ 1 / 2 \end{gathered}$
(b)	Find the number of sides for a regular polygon with each interior angle 160°. Measure of each exterior angle $=180^{\circ}-160^{\circ}=20^{\circ}$ Number of sides $=360^{\circ} \div 20^{\circ}=18$	$1+1$
(c)	$\begin{aligned} & \text { Find the multiplicative inverse of }\left(\frac{-7}{8}+\frac{5}{6}\right) . \\ & \left(\frac{-7}{8}+\frac{5}{6}\right) . \\ & \text { LCM }=24 \\ & =\left(\frac{-21}{24}+\frac{20}{24}\right)=\frac{-1}{24} . \text { MULTIPLICATIVE INVERSE }=-24 \end{aligned}$	$1+1$
(d)	The product of two rational numbers is $\frac{-9}{10}$. If one of the rational numbers is $\left(\frac{2}{5} \times \frac{3}{4}\right)$ then find the other rational number.	$\begin{gathered} 1+1 / 2 \\ +1 / 2 \end{gathered}$

	Ans: $\frac{-9}{10} \div\left(\frac{2}{5} \times \frac{3}{4}\right)=\frac{-9}{10} \div \frac{3}{10}=-3$	
(e)	Find the value of ' x '. Ans: $\underline{/ 1}=180^{\circ}-90^{\circ}=90^{\circ}$ (linear pair) $\begin{aligned} & 90^{\circ}+90^{\circ}+40^{\circ}+60^{\circ}+x=360^{\circ} \text { (Sum of the exterior angles of a polygon is } 360^{\circ} \text {) } \\ & 280^{\circ}+x=360^{\circ} \\ & X=360^{\circ}-280^{\circ}=80^{\circ} \end{aligned}$	$\begin{gathered} 1 / 2+1 / 2 \\ +1 / 2+ \\ 1 / 2 \end{gathered}$

Q.NO	SECTION - C ('3' MARKS EACH) - TOTAL - 06 MARKS	Marks
3.	Simplify $\frac{-3}{7} \times \frac{5}{12}+\frac{11}{12} \times \frac{-3}{7}-\frac{-3}{7}$ using suitable properties. $\begin{aligned} & \frac{-3}{7} \times\left(\frac{5}{12}+\frac{11}{12}-1\right) \\ = & \frac{-3}{7} \times\left(\frac{5}{12}+\frac{11}{12}-\frac{12}{12}\right) \\ = & \frac{-3}{7} \times \frac{4}{12} \\ = & \frac{-1}{7} \end{aligned}$	$\begin{gathered} 1+ \\ 1+1 \end{gathered}$
4.	The angles of a pentagon are in the ratio $3: 4: 5: 5: 10$. Find the largest and the smallest angles of the pentagon. Sum of the interior angles of a pentagon =(5-2) $\times 180^{\circ}=540^{\circ}$ $\begin{aligned} & 3 x+4 x+5 x+5 x+10 x=540^{\circ} \\ & 27 x=540^{\circ} \\ & X=540^{\circ} \div 27=20^{\circ} \end{aligned}$ Largest angle $=10 \mathrm{x}=10 \times 20^{\circ}=200^{\circ}$ The smallest angle $=3 x=3 \times 20^{\circ}=60^{\circ}$	$\begin{aligned} & 1+1+ \\ & 1 / 2+1 / 2 \end{aligned}$

End of Answer Key.

